MATH-432: Probability theoryThe course is based on Durrett's text book
Probability: Theory and Examples.
It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.
FIN-415: Probability and stochastic calculusThis course gives an introduction to probability theory and stochastic calculus in discrete and continuous time. The fundamental notions and techniques introduced in this course have many applicatio
PHYS-467: Machine learning for physicistsMachine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
MATH-414: Stochastic simulationThe student who follows this course will get acquainted with computational tools used to analyze systems with uncertainty arising in engineering, physics, chemistry, and economics. Focus will be on s
COM-406: Foundations of Data ScienceWe discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an