Couvre la convergence des méthodes de points fixes pour les équations non linéaires, y compris les théorèmes de convergence globale et locale et lordre de convergence.
Couvre le théorème du point fixe et la convergence de la méthode de Newton, en soulignant l'importance du choix de la fonction et du comportement de la dérivée pour une itération réussie.
Explore l'accélération de l'algorithme d'itération de valeur en utilisant la théorie de contrôle et les techniques de fractionnement de matrice pour atteindre une convergence plus rapide.