Examine les défis que posent les hypothèses de données, les biais et d'autres aspects de la recherche, y compris les écritures incomplètes et les frustrations des nouveaux arrivants.
Explore l'élaboration d'un modèle de données pour les cas d'utilisation scientifique et l'importance du suivi de l'origine et de l'utilisation des données.
Couvre les fondements des systèmes de base de données, y compris la modélisation des données, le traitement de l'information et les défis de la gestion d'importants volumes de données.
Étudier la mesure et l'opérationnalisation des résultats dans la gestion de la fièvre chez les enfants de moins de cinq ans au moyen d'exemples et d'approches de collecte de données.
Couvre les principes fondamentaux de la science des données, en mettant l'accent sur la profondeur et l'application pratique dans l'apprentissage automatique et l'analyse de données.
Déplacez-vous dans l'intersection de la physique et des données dans les modèles d'apprentissage automatique, couvrant des sujets tels que les champs d'expansion des grappes atomiques et l'apprentissage non supervisé.
Explore la régression logistique pour prédire les proportions de la végétation dans la région amazonienne grâce à l'analyse des données de télédétection.