Applications d'apprentissage automatique: Régression et classification
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre la régression linéaire et pondérée, les paramètres optimaux, les solutions locales, l'application SVR et la sensibilité des techniques de régression.
Couvre les bases du traitement de l'image pour l'observation de la Terre, y compris les objectifs du cours, les détails de l'administration, les aspects interdisciplinaires et les concepts clés du traitement de l'image.
Explore les lois de contrôle d'apprentissage avec Dynamical Systems pour robots, en mettant l'accent sur les problèmes de régression et les techniques d'ajustement.
Couvre la régression MAE, la coque convexe, les avantages de la reformulation et les problèmes pratiques liés aux variables et aux contraintes de décision.
Discute de la méthode de gradient pour l'optimisation, en se concentrant sur son application dans l'apprentissage automatique et les conditions de convergence.
Présente les projets de l'EPFL Digital Humanities Master étudiants, couvrant l'apprentissage automatique, les approches interdisciplinaires et la poésie générée par ordinateur.