Introduit des modèles linéaires pour l'apprentissage supervisé, couvrant le suréquipement, la régularisation et les noyaux, avec des applications dans les tâches d'apprentissage automatique.
Explore les algorithmes de classification génératifs et discriminatifs, en mettant l'accent sur leurs applications et leurs différences dans les tâches d'apprentissage automatique.
Introduit des algorithmes ML non linéaires, couvrant le voisin le plus proche, k-NN, ajustement des courbes polynômes, complexité du modèle, surajustement, et régularisation.
Examine la régression probabiliste linéaire, couvrant les probabilités articulaires et conditionnelles, la régression des crêtes et l'atténuation excessive.
Introduit l'apprentissage supervisé, couvrant la classification, la régression, l'optimisation des modèles, le surajustement, et les méthodes du noyau.
Introduit les bases de l'apprentissage automatique supervisé, couvrant les types, les techniques, le compromis biais-variance et l'évaluation du modèle.
Discute des arbres de régression, des méthodes d'ensemble et de leurs applications dans la prévision des prix des voitures d'occasion et des rendements des stocks.