Couvre la probabilité appliquée, les processus stochastiques, les chaînes de Markov, l'échantillonnage de rejet et les méthodes d'inférence bayésienne.
Couvre les inégalités de concentration et les méthodes d'échantillonnage pour estimer les distributions inconnues, en mettant l'accent sur les taux d'infection de la population.
Explore les caractéristiques de la distribution normale, les scores Z, la probabilité dans les statistiques inférentielles, les effets d'échantillon et l'approximation de la distribution binomiale.
Discute des concepts statistiques clés, y compris les dangers d'échantillonnage, les inégalités et le théorème de la limite centrale, avec des exemples pratiques et des applications.