Évaluation de l'exactitude et de la robustesse de la machine sur ImageNet
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre l'intelligence visuelle, les réseaux de rétroaction, la prédiction basée sur la taxonomie et les réseaux neuronaux récurrents pour la classification des images.
Explore l'apprentissage automatique en imagerie cérébrale, en se concentrant sur les schémas spatiaux, les émotions et les compromis entre classificateurs.
Explore l'amélioration des prédictions d'apprentissage automatique en raffinant les mesures d'erreur et en appliquant des contraintes pour améliorer la précision des prédictions de densité électronique.
Explore les défis d'une vision robuste, y compris les changements de distribution, les exemples d'échecs et les stratégies visant à améliorer la robustesse des modèles grâce à une préformation diversifiée des données.
Explore la quantification de l'incertitude et la détection d'erreurs d'étiquetage dans l'apprentissage profond pour la segmentation sémantique, en mettant l'accent sur les défis et les méthodes de détection d'erreurs.
Explore l'optimisation décentralisée dans l'apprentissage automatique, en mettant l'accent sur la robustesse, la confidentialité et l'équité dans l'apprentissage collaboratif.
Souligne l'importance d'une validation croisée prudente dans les réseaux neuronaux profonds, y compris la division des données et le concept de validation croisée K-fold.