Explore l'estimation des erreurs a priori dans la méthode des éléments finis, couvrant l'analyse de convergence, l'orthogonalité, les formulations faibles et la précision optimale.
Fournit un aperçu de l'analyse des mécanismes avancés utilisant la méthode des éléments finis et l'analyse des éléments finis dans les applications d'ingénierie.
Explore la formulation faible et la méthode Galerkin dans les applications de la méthode des éléments finis, y compris les conditions limites et les systèmes linéaires d'équations.
Introduit la statique linéaire pour les solides élastiques linéaires dans les petites déformations, l'équilibre des contraintes, le principe de travail virtuel et la méthode des éléments finis.
Couvre l'analyse numérique et l'optimisation, en se concentrant sur la résolution de systèmes linéaires dans des dimensions supérieures à l'aide de méthodes à différences finies.
Explore l'analyse des flux non confinés en géomécanique, en mettant l'accent sur les méthodes itératives de solution et les considérations relatives à l'état des limites.
Explique les grilles de différence finie pour calculer les solutions de membranes élastiques à l'aide de l'équation et des méthodes numériques de Laplace.