Couvre les techniques d'apprentissage supervisées et non supervisées dans l'apprentissage automatique, en mettant en évidence leurs applications dans la finance et l'analyse environnementale.
Couvre la régression linéaire et pondérée, les paramètres optimaux, les solutions locales, l'application SVR et la sensibilité des techniques de régression.
Explore les fondamentaux de la régression linéaire, la formation des modèles, l'évaluation et les mesures du rendement, en soulignant l'importance de la R2, du MSE et de l'EAM.
Couvre des exemples de modèles de décision pour lapprentissage supervisé, y compris la régression, la classification, les paires de classement et le décodage de séquence pour les modèles OCR.
Couvre les fondamentaux de l'apprentissage automatique avancé, mettant l'accent sur les applications pratiques par des exercices et des projets interactifs.
Couvre les bases de la régression linéaire et la façon de résoudre les problèmes d'estimation en utilisant les moindres carrés et la notation matricielle.
Introduit l'apprentissage supervisé, couvrant la classification, la régression, l'optimisation des modèles, le surajustement, et les méthodes du noyau.