Explore l'application de Maximum Likelihood Estimation dans les modèles à choix binaire, couvrant les modèles probit et logit, la représentation des variables latentes et les tests de spécification.
Couvre la théorie derrière l'estimation maximale de la vraisemblance, en discutant des propriétés et des applications dans le choix binaire et des modèles multiréponses ordonnées.
Explore l'estimation de la probabilité maximale, la régression logistique, l'estimation de la covariance et les machines vectorielles de soutien pour les problèmes de classification.
Explore l'analyse de régression logistique des données sur le crabe en fer à cheval, en se concentrant sur l'interprétation du rapport de cotes et l'ajustement du modèle.
Explore l'estimation du maximum de vraisemblance dans les modèles linéaires, couvrant le bruit gaussien, l'estimation de la covariance et les machines vectorielles de support pour les problèmes de classification.
Couvre la théorie et les applications des modèles linéaires généralisés, y compris le MLE, les mesures d'ajustement, le rétrécissement et des exemples spéciaux.
Explore la régression logistique pour les variables de réponse binaire, couvrant des sujets tels que l'interprétation du rapport de cotes et l'ajustement du modèle.