Explore les modèles linéaires pour la classification, y compris la classification binaire, la régression logistique, les limites de décision et les machines vectorielles de support.
Explore les modèles linéaires, la régression logistique, les métriques de classification, la MVS et leur utilisation pratique dans les méthodes de science des données.
Couvre les modèles linéaires, la régression logistique, les limites de décision, k-NN, et les applications pratiques dans l'attribution des auteurs et l'analyse des données d'image.
Couvre l'utilisation de machines vectorielles de support pour la classification multi-classes et l'importance des vecteurs de support dans les limites de classification de serrage.