Modèles de cohérence de la mémoire: impact sur les performances et calcul parallèle
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la programmation dynamique dans la conception de processeurs pour augmenter le parallélisme en exécutant des instructions hors de l'ordre, en améliorant les performances et l'efficacité.
Explore l'accélération de l'analyse complexe par la spéculation, la parallélisation des requêtes, la gestion des erreurs de prédiction et la transition vers des plans spéculatifs.
Couvre l'analyse de données intrajournalières, les études systématiques, le débogage, le calcul multicœur, la programmation GPU et le calcul de corrélation avec les GPU.
Releve les défis de la synthèse de haut niveau et de l'optimisation des constructions de boucles en utilisant le modèle polyédrique pour améliorer les performances et la planification.
Explore les systèmes de gestion de données accélérés grâce à une spécialisation en temps réel sur le matériel hétérogène et GPU accédant à des données fraîches de la mémoire CPU.