Explore la recherche de solutions particulières pour des équations différentielles homogènes, en mettant l'accent sur l'indépendance linéaire et la variation des constantes.
Couvre la variation de la méthode des constantes pour résoudre les équations différentielles linéaires du premier ordre, détaillant ses étapes et ses implications pour les solutions générales et particulières.
Explore les équations différentielles linéaires de l'ordre n, y compris les équations homogènes et inhomogènes, les solutions et l'indépendance linéaire.
Explore la résolution d'équations différentielles linéaires de second ordre avec des coefficients constants et diverses méthodes de démonstration, y compris la démonstration par absurdité.
Explore la résolution d'équations différentielles homogènes de premier ordre par des changements variables et se penche dans l'équation différentielle de Bernoulli.
Explore les propriétés et les solutions des ODE scalaires linéaires d'ordre supérieur avec des coefficients x-dépendants et des coefficients constants.