Explore les méthodes itératives pour résoudre les systèmes linéaires, y compris les méthodes Jacobi et Gauss-Seidel, la factorisation Cholesky et le gradient conjugué préconditionné.
Explore la résolution de systèmes linéaires itérative et compare différents résolveurs sur la base des hypothèses les plus défavorables et des mesures de convergence.
Couvre la vectorisation en Python en utilisant Numpy pour un calcul scientifique efficace, en soulignant les avantages d'éviter les boucles et de démontrer des applications pratiques.
Explore l'optimisation Conjugate Gradient, couvrant les cas quadratiques et non linéaires, les conditions Wolfe, BFGS, les algorithmes CG et la symétrie matricielle.