Advanced Machine Learning: Fondements et applications
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
S'insère dans le compromis entre la flexibilité du modèle et la variation des biais dans la décomposition des erreurs, la régression polynomiale, le KNN, et la malédiction de la dimensionnalité.
Couvre l'apprentissage non supervisé, en mettant l'accent sur la réduction de la dimensionnalité et le regroupement, en expliquant comment il aide à trouver des modèles dans les données sans étiquettes.
Explore les applications de la chimie quantique, en mettant l'accent sur le rôle de la densité électronique dans la prédiction des propriétés chimiques et en abordant les défis de la conception des catalyseurs, de la conversion de l'énergie solaire et de la synthèse des médicaments.
Introduit le Support Vector Clustering (SVC) à l'aide d'un noyau gaussien pour la cartographie spatiale des caractéristiques de grande dimension et explique ses contraintes et Lagrangian.
Couvre les bases de l'apprentissage automatique pour les ingénieurs, y compris l'étalonnage, les exigences de cours, des exemples pratiques, des concepts d'IA et des applications ML.
Présente les bases de l'apprentissage par renforcement, couvrant les états discrets, les actions, les politiques, les fonctions de valeur, les PDM et les politiques optimales.