Couvre l'apprentissage non supervisé, en mettant l'accent sur la réduction de la dimensionnalité et le regroupement, en expliquant comment il aide à trouver des modèles dans les données sans étiquettes.
Contient les CNN, les RNN, les SVM et les méthodes d'apprentissage supervisé, soulignant l'importance d'harmoniser la régularisation et de prendre des décisions éclairées dans le domaine de l'apprentissage automatique.
Introduit la modélisation fondée sur les données en mettant l'accent sur la régression, couvrant la régression linéaire, les risques de raisonnement inductif, l'APC et la régression des crêtes.
Explore les applications de la chimie quantique, en mettant l'accent sur le rôle de la densité électronique dans la prédiction des propriétés chimiques et en abordant les défis de la conception des catalyseurs, de la conversion de l'énergie solaire et de la synthèse des médicaments.
Explore les algorithmes de classification génératifs et discriminatifs, en mettant l'accent sur leurs applications et leurs différences dans les tâches d'apprentissage automatique.
Introduit le Support Vector Clustering (SVC) à l'aide d'un noyau gaussien pour la cartographie spatiale des caractéristiques de grande dimension et explique ses contraintes et Lagrangian.