Couvre les vecteurs aléatoires, la distribution articulaire, les fonctions de densité conditionnelle, l'indépendance, la covariance, la corrélation et l'attente conditionnelle.
S'inscrit dans les limites fondamentales de l'apprentissage par gradient sur les réseaux neuronaux, couvrant des sujets tels que le théorème binôme, les séries exponentielles et les fonctions génératrices de moments.
Introduit des variables aléatoires continues et leurs distributions de probabilité, en mettant l'accent sur leurs applications en statistique et en science des données.
Discute des distributions de probabilité et du théorème de la limite centrale, en soulignant leur importance dans la science des données et l'analyse statistique.