Couvertures Modèles linéaires généralisés, probabilité, déviance, fonctions de liaison, méthodes d'échantillonnage, régression de Poisson, surdispersion et modèles de régression alternatifs.
Couvre les bases de la régression linéaire, y compris l'OLS, l'hétéroskédasticité, l'autocorrélation, les variables instrumentales, l'estimation maximale de la probabilité, l'analyse des séries chronologiques et les conseils pratiques.
Introduit les bases de l'apprentissage supervisé, en mettant l'accent sur la régression logistique, la classification linéaire et la maximisation de la probabilité.
Explore la régression logistique pour prédire les proportions de la végétation dans la région amazonienne grâce à l'analyse des données de télédétection.