Explore le contrôle des systèmes dynamiques, la réponse impulsionnelle, la transformée de Laplace et la transformée de Fourier pour résoudre les équations différentielles.
Présente l'approche de l'espace d'état pour modéliser des systèmes dynamiques et son utilité pour la solution à grande vitesse des équations différentielles et des algorithmes informatiques.
Explore la recherche de solutions particulières pour des équations différentielles homogènes, en mettant l'accent sur l'indépendance linéaire et la variation des constantes.
Explore les systèmes dynamiques, en se concentrant sur les mécanismes de contrôle et l'analyse de la stabilité à travers des exemples pratiques et la modélisation mathématique.