Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit des modèles linéaires pour l'apprentissage supervisé, couvrant le suréquipement, la régularisation et les noyaux, avec des applications dans les tâches d'apprentissage automatique.
Explore la cartographie des atomes dans les réactions chimiques et la transition vers la grammaire réactionnelle à l'aide de l'architecture du transformateur.
Discute de l'évolution des réseaux de neurones artificiels, des défis de l'apprentissage supervisé et du rôle des comportements innés dans la formation du comportement.
Explore le choix des architectures de réseaux graphes neuraux, en évaluant la complexité du modèle et les performances à partir de statistiques de données.
Introduit FIGLearn, une méthode d'apprentissage des filtres et des graphiques utilisant un transport optimal, surperformant l'état actuel de la technique.
Explore les transitions de phase en physique et les problèmes de calcul, mettant en évidence les défis rencontrés par les algorithmes et l'application des principes de physique dans la compréhension des réseaux neuronaux.