Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explique la rétropropagation dans les réseaux neuronaux, la mise à jour des poids en fonction des erreurs et l'évaluation des réseaux par le biais de pertes d'entraînement et de tests.
Explique la droite de régression des moindres carrés, les coefficients de corrélation, les valeurs aberrantes, les points influents et les résidus dans les modèles de régression.
Explore la régression quantile pour la prévision des prix de l'électricité en utilisant des données de séries chronologiques, la régularisation et l'astuce du noyau.
Explore l'application de l'apprentissage automatique aux systèmes à l'échelle atomique, en mettant l'accent sur la symétrie dans la cartographie des caractéristiques et la construction de descripteurs invariants en rotation.
Explore les modèles linéaires, la régression logistique, les métriques de classification, la MVS et leur utilisation pratique dans les méthodes de science des données.