Couvre les concepts fondamentaux de probabilité et de statistiques, y compris les résultats intéressants, le modèle standard, le traitement de l'image, les espaces de probabilité et les tests statistiques.
Couvre les probabilités, les variables aléatoires, les attentes, les GLM, les tests d'hypothèse et les statistiques bayésiennes avec des exemples pratiques.
Couvre les propriétés stochastiques, les structures du réseau, les modèles, les statistiques, les mesures de centralité et les méthodes d'échantillonnage dans l'analyse des données du réseau.
Discute des concepts statistiques clés, y compris les dangers d'échantillonnage, les inégalités et le théorème de la limite centrale, avec des exemples pratiques et des applications.
Déplacez-vous dans les probabilités, les statistiques, les paradoxes et les variables aléatoires, montrant leurs applications et propriétés du monde réel.
Couvre les vecteurs aléatoires, la densité de probabilité articulaire, les variables aléatoires indépendantes, les fonctions de deux variables aléatoires et les variables aléatoires gaussiennes.