Couvre les algorithmes pour résoudre des problèmes mathématiques à l'aide d'un ordinateur, y compris les équations non linéaires et les méthodes d'approximation numérique.
Explore la révision du Système international d'unités, en se concentrant sur le kilogramme, l'ampère, le kelvin et la taupe, et l'impact sur les mesures scientifiques.
Couvre la méthode de bisection pour approximer les zéros de fonctions, en discutant des avantages, des inconvénients et d'une approche alternative pour une convergence plus rapide.
Couvre les méthodes de résolution d'équations non linéaires, y compris les méthodes de bisection et de Newton-Raphson, en mettant l'accent sur les critères de convergence et d'erreur.
Explore l'analyse numérique des équations non linéaires, en mettant l'accent sur les critères de convergence et les méthodes comme la bisection et l'itération à point fixe.