Modèles statistiques: Échantillonnage et tests d'hypothèse
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explorer l'analyse de la pollution atmosphérique à l'aide de données sur le vent, de distributions de probabilités et de modèles de trajectoire pour l'évaluation de la qualité de l'air.
Explore les distributions de probabilité pour les variables aléatoires dans les études sur la pollution atmosphérique et le changement climatique, couvrant les statistiques descriptives et inférentielles.
Explore des statistiques suffisantes, la compression des données et leur rôle dans l'inférence statistique, avec des exemples comme Bernoulli Trials et des familles exponentielles.
Fournit un aperçu de la théorie des probabilités de base, de l'ANOVA, des tests t, du théorème de limite centrale, des métriques, des intervalles de confiance et des tests non paramétriques.
Explore l'estimation de la probabilité maximale et les tests d'hypothèses multivariées, y compris les défis et les stratégies pour tester plusieurs hypothèses.
Explore l'inférence statistique, la suffisance et l'exhaustivité, en soulignant l'importance de statistiques suffisantes et le rôle de statistiques complètes dans la réduction des données.
Couvre les concepts fondamentaux de probabilité et de statistiques, en se concentrant sur l'analyse des données, la représentation graphique et les applications pratiques.
Explore la cohérence et les propriétés asymptotiques de l’estimateur de vraisemblance maximale, y compris les défis à relever pour prouver sa cohérence et construire des estimateurs de type MLE.