Explore explicitement les méthodes de Runge-Kutta stabilisées et leur application aux problèmes inverses bayésiens, couvrant l'optimisation, l'échantillonnage et les expériences numériques.
Introduit Manopt, une boîte à outils pour l'optimisation sur les manifolds, couvrant le gradient et les contrôles hessiens, les appels de solveur et la mise en cache manuelle.
Couvre les techniques de réduction de la variance dans l'optimisation, en mettant l'accent sur la descente en gradient et les méthodes de descente en gradient stochastique.
Explore les solveurs laplaciens, couvrant des solutions approximatives, des applications, la conversion d'erreurs, et les avancées théoriques dans les méthodes de calcul.