Couvre l'analyse causale des données d'observation, des pièges, des outils permettant de tirer des conclusions valables et d'aborder les variables confusionnelles.
Explore l'importance de la randomisation dans la spectrométrie de masse des protéines et la protéomique, en soulignant son rôle dans la minimisation des biais et la garantie de la validité de la recherche.
Examine l'inférence causale, en soulignant l'importance de s'engager dans une ontologie pour tirer des inférences causales et choisir des estimands appropriés.
Couvre les bases de la théorie des probabilités, y compris les définitions, les calculs et les concepts importants pour l'inférence statistique et l'apprentissage automatique.