Couvre les récipients à pression linéaire, les coquilles minces et la pression critique de flambage, en mettant l'accent sur la réduction dimensionnelle de 3D à 2D.
Explore les transformations de Lorentz, les tenseurs covariants, l'invariance de rotation et les transformations linéaires dans les espaces vectoriels.
Explore les représentations de l'environnement chimique, les corrélations symétriques et les applications d'apprentissage automatique à l'échelle atomique.
Couvre les fondamentaux de la géométrie différentielle des surfaces, y compris l'équilibre des coquilles, des récipients sous pression, et la courbure des surfaces.
Couvre l'expression de la Kirchhoff-St. L'énergie de la venue dans un cadre covariant et les équations d'équilibre pour les coquilles sphériques, entre autres sujets.
Explique la covariance et la contrevariance des vecteurs dans l'algèbre multilinéaire et l'analyse des tenseurs, en se concentrant sur leur comportement en fonction des changements de base et d'échelle.