Couvre la décomposition d'une matrice dans ses valeurs propres et ses vecteurs propres, l'orthogonalité des vecteurs propres et la normalisation des vecteurs.
Explore les valeurs propres et les vecteurs propres, démontrant leur importance dans l'algèbre linéaire et leur application dans la résolution de systèmes d'équations.
Explore la base canonique en algèbre linéaire, en se concentrant sur la représentation matricielle, la diagonalisation et les polynômes caractéristiques.