Inférence statistique: Décay moyen pondéré et radioactif
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'inférence des hypothèses pour les estimands statistiques dans les modèles linéaires généralisés, en mettant l'accent sur des approches robustes et génériques.
Couvre les prédicteurs de moyenne locaux, y compris les voisins les plus proches K et les estimateurs Nadaraya-Watson, ainsi que la régression linéaire locale et ses applications.
Explore l'application de la physique statistique dans les problèmes de calcul, couvrant des sujets tels que l'inférence bayésienne, les modèles de verre de spin de champ moyen, et la détection comprimée.
Couvre les bandits multi-armes dans l'apprentissage du renforcement, explorant le compromis entre l'exploration et l'exploitation pour minimiser les regrets.