Couvre les méthodes de gradient de politique dans l'apprentissage du renforcement, en se concentrant sur les techniques d'optimisation et les applications pratiques comme le problème du poteau.
Couvre les concepts fondamentaux de l'apprentissage profond et de l'architecture Transformer, en se concentrant sur les réseaux neuronaux, les mécanismes d'attention et leurs applications dans les tâches de modélisation de séquence.
Explore l'apprentissage bio-inspiré avec des réseaux neuronaux et des algorithmes génétiques, couvrant la structure, la formation et les applications pratiques.
Couvre les techniques d'apprentissage par renforcement profond pour un contrôle continu, en se concentrant sur les méthodes d'optimisation des politiques proximales et leurs avantages par rapport aux approches de gradient de politique standard.
Introduit des concepts fondamentaux d'apprentissage automatique, couvrant la régression, la classification, la réduction de dimensionnalité et des modèles générateurs profonds.
Explore l'apprentissage profond pour les véhicules autonomes, couvrant la perception, l'action et les prévisions sociales dans le contexte des technologies de capteurs et des considérations éthiques.
Explore les approches et les défis modernes en matière d'acquisition de données pour l'apprentissage de contrôleurs optimaux au moyen de démonstrations et de méthodes axées sur les données.