Explore les modèles de diffusion, en mettant l'accent sur la production d'échantillons provenant d'une distribution et l'importance de la dénigrement dans le processus.
Couvre la probabilité appliquée, les processus stochastiques, les chaînes de Markov, l'échantillonnage de rejet et les méthodes d'inférence bayésienne.
Couvre les inégalités de concentration et les méthodes d'échantillonnage pour estimer les distributions inconnues, en mettant l'accent sur les taux d'infection de la population.
Explore la limitation de la distribution dans les chaînes de Markov et les implications de l'ergodicité et de l'apériodicité sur les distributions stationnaires.