Explore les concepts de taux de convergence linéaire et quadratique, en soulignant leurs différences et leurs applications dans les méthodes numériques.
Couvre les méthodes itératives pour résoudre des équations linéaires et analyser la convergence, y compris le contrôle des erreurs et les matrices définies positives.
Couvre la théorie de l'échantillonnage de Markov Chain Monte Carlo (MCMC) et discute des conditions de convergence, du choix de la matrice de transition et de l'évolution de la distribution cible.
Explore l'équation d'onde pour une chaîne vibrante et sa solution numérique en utilisant des formules de différence finie et le schéma Newmark dans MATLAB/GNU Octave.
Explore les caractéristiques de la turbulence, les méthodes de simulation et les défis de modélisation, fournissant des lignes directrices pour le choix et la validation des modèles de turbulence.