Optimisation de la politique proximale pour un contrôle continu
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit des réseaux neuronaux convolutionnels (RCN) pour les véhicules autonomes, couvrant l'architecture, les applications et les techniques de régularisation.
Explore les défis et les points de vue de l'apprentissage profond, en mettant l'accent sur le paysage des pertes, la généralisation et l'apprentissage caractéristique.
Couvre les concepts clés de l'apprentissage par renforcement, des réseaux neuronaux, du clustering et de l'apprentissage non supervisé, en mettant l'accent sur leurs applications et leurs défis.
Explore la prévision des trajectoires dans les véhicules autonomes, en mettant l'accent sur les modèles d'apprentissage profond pour prédire les trajectoires humaines dans les scénarios de transport socialement conscients.
Introduit un apprentissage profond, de la régression logistique aux réseaux neuraux, soulignant la nécessité de traiter des données non linéairement séparables.
Discute de la navigation par quadritor en utilisant l'apprentissage de renforcement profond et le contrôle de bas niveau, en mettant l'accent sur l'intelligence visuelle et la robustesse du modèle de regard.