Introduit les bases de l'apprentissage automatique, couvrant l'apprentissage supervisé et non supervisé, la régression linéaire et la compréhension des données.
Introduit des algorithmes ML non linéaires, couvrant le voisin le plus proche, k-NN, ajustement des courbes polynômes, complexité du modèle, surajustement, et régularisation.
Présente les principes fondamentaux de la régression dans l'apprentissage automatique, couvrant la logistique des cours, les concepts clés et l'importance des fonctions de perte dans l'évaluation des modèles.
Couvre l'optimisation dans l'apprentissage automatique, en mettant l'accent sur la descente par gradient pour la régression linéaire et logistique, la descente par gradient stochastique et des considérations pratiques.
Introduit les bases de l'apprentissage automatique supervisé, couvrant les types, les techniques, le compromis biais-variance et l'évaluation du modèle.
Discute des arbres de décision et des forêts aléatoires, en se concentrant sur leur structure, leur optimisation et leur application dans les tâches de régression et de classification.
Introduit des concepts fondamentaux d'apprentissage automatique, couvrant la régression, la classification, la réduction de dimensionnalité et des modèles générateurs profonds.
Couvre l'apprentissage supervisé en mettant l'accent sur la régression linéaire, y compris des sujets comme la classification numérique, la détection des pourriels et la prédiction de la vitesse du vent.
Couvre l'apprentissage supervisé, la classification, la régression, les limites de décision, le surajustement, Perceptron, SVM et la régression logistique.