Introduit des techniques de clustering d'apprentissage automatique non supervisées telles que K-means, Gaussian Mixture Models et DBSCAN, expliquant leurs algorithmes et leurs applications.
Explore les modèles thématiques, les modèles de mélange gaussien, la répartition des dirichlets latents et l'inférence variationnelle dans la compréhension des structures latentes à l'intérieur des données.
Introduit la probabilité, les statistiques, les distributions, l'inférence, la probabilité et la combinatoire pour étudier les événements aléatoires et la modélisation en réseau.
Couvre les méthodes pour définir la tempête de conception, la distribution empirique des maxima de pluie, la distribution de Gumbel, et les relations intensité-durée-fréquence.
Explique le regroupement des moyennes k, en attribuant des points de données à des grappes en fonction de la proximité et en minimisant les distances carrées à l'intérieur des grappes.