Discute des applications du calcul dans le calcul des longueurs et des surfaces de révolution, en mettant l'accent sur le calcul intégral et les interprétations géométriques.
Explore les transformations géométriques et les invariances modernes, en mettant l'accent sur la géométrie projective et les développements historiques.
Discute des principes géométriques en architecture, en se concentrant sur les hyperboloïdes et les paraboloïdes et leurs applications dans la conception et l'ingénierie structurelle.
Explore la dérivée des longueurs de courbe, des déformations à extrémité fixe, des géodésiques, des typologies de points de surface et de la paramétrisation de sphère.
Explore les surfaces réglées, les surfaces générées par les lignes mobiles dans l'espace, y compris les cônes, les cylindres et les hyperboloïdes, avec des applications dans l'architecture.