Couvre la régression linéaire et logistique pour les tâches de régression et de classification, en mettant l'accent sur les fonctions de perte et la formation de modèle.
Introduit les bases de l'apprentissage supervisé, en mettant l'accent sur la régression logistique, la classification linéaire et la maximisation de la probabilité.
Explore l'analyse de régression logistique des données sur le crabe en fer à cheval, en se concentrant sur l'interprétation du rapport de cotes et l'ajustement du modèle.