Couvre la détermination des espaces vectoriels, le calcul des noyaux et des images, la définition des bases et la discussion des sous-espaces et des espaces vectoriels.
Explore les transformations de Lorentz, les tenseurs covariants, l'invariance de rotation et les transformations linéaires dans les espaces vectoriels.
Explore l'équivalence dans les espaces vectoriels, couvrant les conditions pour que les déclarations soient considérées comme équivalentes et les propriétés des bases algébriques.