En mathématiques, une intégrale de surface est une intégrale définie sur toute une surface qui peut être courbe dans l'espace. Pour une surface donnée, on peut intégrer sur un champ scalaire ou sur un champ vectoriel. Les intégrales de surface ont de nombreuses applications : par exemple, en physique, dans la théorie classique de l'électromagnétisme. Pour exprimer de façon explicite l'intégrale de surface, il faut généralement paramétrer la surface S en question en considérant un système de coordonnées curvilignes, comme la longitude et la latitude sur une sphère.
En mathématiques, une surface de révolution est une surface de R, invariante par rotation autour d'un axe fixe. Une surface balayée par la rotation d'une courbe quelconque autour d'un axe fixe est une surface de révolution. Son intersection avec un plan contenant l'axe s'appelle une méridienne. Son intersection avec un plan perpendiculaire à l'axe est formée de cercles appelés parallèles. Les surfaces de révolution comprennent les sphères, les tores, cylindre de révolution, ellipsoïde de révolution et hyperboloïdes de révolution, les ovoïdes, etc.
The surface area (symbol A) of a solid object is a measure of the total area that the surface of the object occupies. The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc length of one-dimensional curves, or of the surface area for polyhedra (i.e., objects with flat polygonal faces), for which the surface area is the sum of the areas of its faces. Smooth surfaces, such as a sphere, are assigned surface area using their representation as parametric surfaces.
A parametric surface is a surface in the Euclidean space which is defined by a parametric equation with two parameters . Parametric representation is a very general way to specify a surface, as well as implicit representation. Surfaces that occur in two of the main theorems of vector calculus, Stokes' theorem and the divergence theorem, are frequently given in a parametric form. The curvature and arc length of curves on the surface, surface area, differential geometric invariants such as the first and second fundamental forms, Gaussian, mean, and principal curvatures can all be computed from a given parametrization.
Bio-inspired robotic locomotion is a fairly new subcategory of bio-inspired design. It is about learning concepts from nature and applying them to the design of real-world engineered systems. More specifically, this field is about making robots that are inspired by biological systems, including Biomimicry. Biomimicry is copying from nature while bio-inspired design is learning from nature and making a mechanism that is simpler and more effective than the system observed in nature.