Couvre la théorie de l'échantillonnage de Markov Chain Monte Carlo (MCMC) et discute des conditions de convergence, du choix de la matrice de transition et de l'évolution de la distribution cible.
Couvre la probabilité appliquée, les processus stochastiques, les chaînes de Markov, l'échantillonnage de rejet et les méthodes d'inférence bayésienne.
Explore Markov Chain Monte Carlo pour l'échantillonnage des distributions haute dimension et l'optimisation des fonctions à l'aide de l'algorithme Metropolis-Hastings.
Explore les chaînes de Markov et leurs applications dans des algorithmes, en se concentrant sur l'impatience des utilisateurs et la génération d'échantillons fidèles.
Couvre les modèles générateurs en mettant l'accent sur l'auto-attention et les transformateurs, en discutant des méthodes d'échantillonnage et des moyens empiriques.
Couvre la théorie et les applications de la coloration graphique, en se concentrant sur les modèles de blocs stochastiques dissortatifs et la coloration plantée.