Explore l'intégration de la structure et de la fonction cérébrales à l'aide des techniques de traitement des signaux graphiques, y compris l'IRM fonctionnelle et l'analyse du connectome structurel.
Explore les méthodes dynamiques de connectivité fonctionnelle dans l'IRMf, en mettant l'accent sur l'identification de plusieurs états cérébraux et leurs applications dans la compréhension des troubles cérébraux.
S'oriente vers l'analyse de la dynamique cérébrale et des réseaux à l'aide de techniques de neuroimagerie avancées et de méthodes de traitement des signaux.
Explore l'extraction de texte de données à longue queue dans les neurosciences et la connectivité cérébrale, y compris la reconnaissance d'entités nommées, l'extraction de la concentration de protéines et la comparaison des matrices de connectivité.
Explore les signaux neuraux, les techniques d'imagerie cérébrale et l'organisation du cerveau, soulignant l'importance de comprendre les méthodes d'imagerie cérébrale et de mesurer les signaux du cerveau de façon non invasive.
Explore les chemins, la diffusion et la navigation dans les réseaux du cerveau, y compris des sujets comme l'algorithme de Dijkstra et l'efficacité du réseau.
Explore la modélisation de l'activité électrique du neurone, y compris les canaux ioniques et les concentrations, l'équation de Nernst et le potentiel de repos.