Explore l'information mutuelle, quantifiant les relations entre les variables aléatoires et mesurant le gain d'information et la dépendance statistique.
Couvre les mesures d'information telles que l'entropie, la divergence Kullback-Leibler et l'inégalité de traitement des données, ainsi que les noyaux de probabilité et les informations mutuelles.
Introduit des variables aléatoires et leur signification dans la théorie de l'information, couvrant des concepts tels que la valeur attendue et l'entropie de Shannon.
Couvre les modèles de minimisation de l'énergie dans les systèmes biologiques, en se concentrant sur l'équilibre et les rôles de l'entropie et de l'hydrophobicité.
Explore les promenades aléatoires, le modèle Moran, la chimiotaxie bactérienne, l'entropie, la théorie de l'information et les sites en coévolution dans les protéines.
Sur l'entropie et l'information mutuelle explore la quantification de l'information dans la science des données au moyen de distributions de probabilités.