Introduit les bases de la géométrie différentielle pour les courbes et les surfaces paramétriques, la courbure de couverture, les vecteurs tangents et l'optimisation des surfaces.
Couvre la différentiabilité dans les fonctions multivariables et l'existence de plans tangents, en mettant l'accent sur les interprétations géométriques et les applications pratiques.
Discute des applications du calcul dans le calcul des longueurs et des surfaces de révolution, en mettant l'accent sur le calcul intégral et les interprétations géométriques.