Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les modèles d'exécution de Hadoop, la tolérance aux défauts, la localisation des données et la programmation, soulignant les limites de MapReduce et d'autres cadres de traitement distribué.
Présentation d'Apache Spark, couvrant son architecture, ses RDD, ses transformations, ses actions, sa tolérance aux pannes, ses options de déploiement et ses exercices pratiques dans les blocs-notes Jupyter.
Couvre la planification avec des adversaires, des algorithmes de recherche heuristique et des stratégies pour les jeux avec le hasard, en soulignant l'importance des agents délibératifs.
Couvre les optimisations avancées de Spark, la gestion de la mémoire, les opérations de brassage et les stratégies de partitionnement des données pour améliorer l'efficacité du traitement des données volumineuses.
Couvre les bases de la programmation scientifique pour les ingénieurs, en soulignant l'importance de GIT pour le travail collaboratif et en fournissant un aperçu des défis du développement de logiciels scientifiques.
Explore l'estimation spectrale des signaux gaussiens et binaires dans le problème d'estimation matricielle, en analysant l'impact du rapport signal-bruit.
Couvre le développement d'un jeu interactif de devinage de nombres dans MATLAB, démontrant une initialisation variable, la génération aléatoire de nombres et l'entrée interactive de l'utilisateur.