Couvre les bases de la programmation scientifique pour les ingénieurs, en soulignant l'importance de GIT pour le travail collaboratif et en fournissant un aperçu des défis du développement de logiciels scientifiques.
Explore les discussions de conception et la documentation dans le développement de logiciels, en mettant l'accent sur la programmation scientifique et les outils de documentation de code comme Doxygen et Sphinx.
Introduit des outils collaboratifs de science des données comme Git et Docker, en mettant l'accent sur le travail d'équipe et les exercices pratiques pour un apprentissage efficace.
Introduit les bases de la science des données, couvrant les arbres de décision, les progrès de l'apprentissage automatique et l'apprentissage par renforcement profond.
Introduit Renku, une plateforme pour la science collaborative des données, mettant l'accent sur la reproductibilité, la shareability, la réutilisabilité et la sécurité.
Couvre les progrès récents de l'apprentissage structurel pour les modèles graphiques, y compris les modèles gaussiens, les modèles mixtes et les événements extrêmes.
Déplacez-vous dans le Big Data en neurosciences, en analysant les grands ensembles de données et en abordant les défis de l'organisation, de la normalisation, de l'intégration et de la visualisation des données.