Séance de cours

Gradient de politique déterministe profonde pour le contrôle continu

Séances de cours associées (32)
Réseaux neuronaux : apprentissage multicouche
Couvre les fondamentaux des réseaux neuronaux multicouches et de l'apprentissage profond, y compris la propagation arrière et les architectures réseau comme LeNet, AlexNet et VGG-16.
Réseaux neuronaux : Réseaux neuronaux profonds
Explore les bases des réseaux neuraux, en mettant l'accent sur les réseaux neuraux profonds, leur architecture et leur formation.
Joueur IA : D4
Explore l'apprentissage par renforcement dans l'IA pour maîtriser les jeux à l'aide de réseaux neuronaux.
Optimisation des réseaux neuraux
Explore l'optimisation des réseaux neuronaux, y compris la rétropropagation, la normalisation des lots, l'initialisation du poids et les stratégies de recherche d'hyperparamètres.
Estimation de la pose à la main
Couvre l'estimation de la pose de la main, les techniques de régression et l'évolution des modèles de classification d'images de LeNet à VGG19.
Apprentissage profond pour les véhicules autonomes: modèles prédictifs
Explore les modèles prédictifs et les traceurs pour les véhicules autonomes, couvrant la détection d'objets, les défis de suivi, le suivi en réseau neuronal et la localisation des piétons en 3D.
Ensachage : méthode de régularisation en apprentissage profond
Explore l'ensachage en tant que méthode de régularisation dans l'apprentissage en profondeur, en formant plusieurs variantes de modèles sur différents sous-ensembles de données pour améliorer la généralisation.
Caractéristique universelle de la formation intrajournalière des prix
Explore la caractéristique universelle de la formation de prix intrajournalière en utilisant des techniques d'apprentissage en profondeur pour prévoir les changements de prix en fonction de l'historique des flux d'ordres.
Principes fondamentaux de l'apprentissage par renforcement
Plongez dans les bases de l'apprentissage par renforcement, en discutant des états, des actions, des récompenses, des politiques et des applications de réseaux neuronaux.
Réseaux neuronaux convolutionnels
Introduit des réseaux neuronaux convolutionnels (RCN) pour les véhicules autonomes, couvrant l'architecture, les applications et les techniques de régularisation.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.