Explore la perception dans l'apprentissage profond pour les véhicules autonomes, couvrant la classification d'image, les méthodes d'optimisation, et le rôle de la représentation dans l'apprentissage automatique.
Explore l'optimisation des modèles d'intégration de mots, y compris la minimisation de la fonction de perte et la descente de gradient, et introduit des techniques comme Fasttext et Byte Pair Encoding.
Couvre la descente du gradient stochastique, la régression linéaire, la régularisation, l'apprentissage supervisé et la nature itérative de la descente du gradient.
Explore la formation, l'optimisation et les considérations environnementales des réseaux neuronaux, avec des informations sur les clusters PCA et K-means.