Couvre les techniques de traitement de l'image, y compris l'ajout de bruit, le filtrage et l'amélioration de l'image à l'aide de divers filtres et outils.
Explore les réseaux neuronaux convolutifs, couvrant la convolution, la corrélation croisée, la mise en commun maximale, la structure des couches et des exemples tels que LeNet5 et AlexNet.
Couvre les fondamentaux des réseaux neuronaux multicouches et de l'apprentissage profond, y compris la propagation arrière et les architectures réseau comme LeNet, AlexNet et VGG-16.
Couvre les bases des réseaux neuronaux, des fonctions d'activation, de la formation, du traitement d'image, des CNN, de la régularisation et des méthodes de réduction de dimensionnalité.
S'oriente vers l'approximation du réseau neuronal, l'apprentissage supervisé, les défis de l'apprentissage à haute dimension et la révolution expérimentale de l'apprentissage profond.
Explore les modèles de calcul du système visuel ventral, en se concentrant sur l'optimisation des réseaux pour les tâches réelles et la comparaison avec les données cérébrales.