Introduit les bases de la programmation linéaire, y compris les problèmes d'optimisation, les fonctions de coût, l'algorithme simplex, la géométrie des programmes linéaires, les points extrêmes et la dégénérescence.
Fournit un aperçu des techniques d'optimisation linéaire, en mettant l'accent sur les méthodes de résolution de problèmes et l'importance des contraintes et des fonctions objectives.
Couvre les bases de l'optimisation, y compris les perspectives historiques, les formulations mathématiques et les applications pratiques dans les problèmes de prise de décision.
Fournit un aperçu des techniques d'optimisation, en se concentrant sur la descente de gradient et les propriétés des fonctions convexes dans l'apprentissage automatique.
Explore l'optimisation dans la modélisation des systèmes énergétiques, couvrant les variables de décision, les fonctions objectives et les différentes stratégies avec leurs avantages et leurs inconvénients.
Discute des techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la descente de gradient stochastique et ses applications dans les problèmes contraints et non convexes.