Couvre les approches modernes du réseau neuronal en matière de PNL, en mettant l'accent sur l'intégration de mots, les réseaux neuronaux pour les tâches de PNL et les futures techniques d'apprentissage par transfert.
Couvre les bases de l'apprentissage du renforcement, y compris les processus décisionnels de Markov et les méthodes de gradient des politiques, et explore les applications du monde réel et les avancées récentes.
Explore les robots d'entraînement en renforçant l'apprentissage et l'apprentissage de la démonstration, mettant en évidence les défis de l'interaction homme-robot et de la collecte de données.
Couvre les méthodes de gradient de politique, en mettant l'accent sur l'apprentissage par l'action directe et l'optimisation des récompenses dans l'apprentissage par renforcement.
Explore les progrès de l'IA générative et de l'apprentissage par renforcement, en se concentrant sur leurs applications, leur sécurité et leurs futures orientations de recherche.
Couvre les techniques d'apprentissage par renforcement profond pour un contrôle continu, en se concentrant sur les méthodes d'optimisation des politiques proximales et leurs avantages par rapport aux approches de gradient de politique standard.
Explore les approches et les défis modernes en matière d'acquisition de données pour l'apprentissage de contrôleurs optimaux au moyen de démonstrations et de méthodes axées sur les données.